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Abstract— Multiple Input-Multiple Output (MIMO) sys-
tems are of great interest due to their ability to significantly
increase the capacity of wireless communications systems,
but for these to be useful they must also be practical
for implementation in very large scale integrated (VLSI)
circuits. A particularly difficult part of these systems is
the detector, where the maximum-likelihood (ML) solution
cannot be directly implemented due to its exponential
complexity.

Lattice decoders, such as the sphere search, exhibit
near-ML performance with reduced complexity, but their
application is still limited by computational requirements.
Here, a number of optimisations are presented, designed to
reduce the computational cost of the sphere search in the
context of VLSI implementation for MIMO applications.
We also propose parallel implementation strategies for such
a detector, suitable for implementation in VLSI. This is then
combined with a single-pass tree search approach and it is
demonstrated that it can be designed so that the error-rate
performance is not significantly impaired.

Index Terms— MIMO, Sphere Detector, Tree Search,
VLSI, ASIC Implementation.

I. PROBLEM BACKGROUND

Multiple input multiple-output (MIMO) systems
utilise spatial diversity between arrays of transmit and
receive antennae to achieve high data rates [1]. Current
research allows for data rates up to 28.8Mbps [2], how-
ever while further increases in data rate are theoretically
possible, the practicality is limited. The very large scale
integrated (VLSI) circuit in [2] is a 4x4 MIMO receiver
using a QPSK constellation, but it is desirable to achieve
a higher data rate.

There are two methods in which this can be done.
While one such method is to increase the constellation
size, [3] indicates that it is preferable to first increase
the antennae dimensionality. However, this increases the
size of the detection problem by an exponential order.
This can be explained by examination of the following
system model for a MIMO channel with n transmitters
and m receivers:

y = Hs + n. (1)

Here, y is an m−vector with each element representing
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the received despread sample from one antennae, s is the
n−vector of transmitted symbols, n is a length m noise
vector, and H is an m×n matrix of channel coefficients
between antennae.

The MIMO detection problem is to solve (1) for s,
with knowledge of the channel H, the received symbol
estimates y, and that the elements of s are known
to be from a finite set of constellation points. The
problem is infact identical to the multiuser detection
(MUD) problem, but with different meanings given to the
variables [2]. The maximum-likelihood (ML) multiuser
detector [5] involves finding

s̃ = arg min
s∈Λ
‖y −Hs‖2, (2)

where Λ is the set of possible decisions over all users.
This is a combinatorial optimisation problem that is

NP-hard, and hence impractical for all but the smallest of
problems. In particular, with n transmitters, each trans-
mitting from a constellation of size 2q, the complexity of
the problem becomes O (2qn). The MIMO receiver chip
in [2] has a search space of 22×4 = 256 and is able to
perform a brute force search, but doubling the number
of antennae to 8 increases the search space to 65536,
which is beyond current feasible receiver designs.

Lattice decoding, especially the sphere search variant,
is regarded as a very promising candidate for practi-
cal, high performance, near-optimal ML detection al-
gorithms. It has recently received wide attention for its
potential application to space-time decoding, and MUD
for multi-carrier code-division multiple-access (MC-
CDMA) [6] and direct sequence CDMA (DS-CDMA)
[7] systems. An equivalent algorithm, the closest point
search, is well described by [8], and the applications to
MIMO channels have been studied in [1].

The sphere search can be described as a variation of
a tree search, making use of simplifications to greatly
reduce the search space to only a few percent of the
points considered in the full ML problem. However,
the algorithm and the associated preprocessing is still
computationally intensive, and optimisations need to be
found to further reduce its complexity.

To address this problem, this paper proposes a vari-
ation in the sphere search technique, and investigates
strategies that may be used to assist in the VLSI im-
plementation of such a detector. Section II introduces
the sphere search algorithm and its computational re-
quirements. In Section III, our proposed parallel search
strategy and single-pass simplification is described, and
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1: Example of cost allocations for tree search decisions. Note that
“Level 0” does not actually exist in the search, since the first decision
is represented by “Level 1”.

Section IV describes how this allows for a simplified
architecture. Section V presents the relative complexity
comparisons of this technique against standard algo-
rithms. Finally, the paper is concluded with a summary
and evaluation of these proposals.

II. STANDARD SPHERE SEARCH ALGORITHM

The optimal solution, s̃, in (2) may be expressed as
[1]:

s̃ = arg min
s∈Λ

(s− ŝ)H HHH (s− ŝ) . (3)

Here, Λ is the lattice of possible decisions over all
transmitters, HH denotes the conjugate transpose of H,
and ŝ is the unconstrained ML estimate of s, given by

ŝ = (HHH)−1HHy. (4)

The sphere search has the additional concept of a
radius, r, which is a threshold that defines the maximum
distance around the search centre, ŝ , that will be
searched. The problem becomes one of solving (3) for
cases s ∈ Λ that satisfy

(s− ŝ)H HHH (s− ŝ) ≤ r2. (5)

By utilising either a Cholesky or QR decomposition,
an upper triangular U can be obtained such that UHU =
HHH, with the added constraint that the diagonals of
U are non-negative, so that (5) may be rewritten as

K∑
i=1

∣∣∣∣∣∣uii (si − ŝi) +
K∑

j=i+1

uij (sj − ŝj)

∣∣∣∣∣∣
2

≤ r2,(6)

where uij is the (i, j)-th element of U.
The upper triangular nature of U allows the optimisa-

tion problem to be structured as a tree search, with each
transmitter representing one level of the tree, and the
branches representing a choice of one of the constellation
points available for each transmitter. Associated with
each branch is a cost contribution, represented by one
term of the outer summation in (6). Each leaf then
represents the entire collection of decisions, and has a
cost that is the sum of the cost contributions associated
with each of the branches taken to reach that leaf from
the root of the tree.

Fig. 1 presents an example for a K = 4 antennae prob-
lem, with binary decisions for each transmitter. The first
decision is represented by level 1, which corresponds to

A B C D

A B C D
A B C D

2: On each level, the children of the current nodes (labeled A-D) are
evaluated by the two parallel searchers. The best two are then selected
as the current nodes for the next iteration.

the last row of U. Defining cost CK+1 as 0, the cost for
the node at level K + 1− n of the tree is

Cn = Cn+1 +

∣∣∣∣∣∣unn (sn − ŝn) +
K∑

j=n+1

unj (sn − ŝn)

∣∣∣∣∣∣
2

.

(7)
It is apparent from (7) that all descendants of a given

node will have a cost that is not smaller than the cost of
that parent node. Therefore, if a given node has a cost
greater than the current radius, all of its descendants will
also have a greater cost, and so the tree may be pruned
at that point. It is via this pruning that the sphere search
significantly reduces the search space and therefore the
complexity of the detection problem.

When a leaf node is evaluated, it may be added to
a “leading candidates list” of an arbitrary fixed length
n, which contains the best n leaves found to date. This
list is used, after the search is complete, to generate soft
information about the decision for each transmitter, as
described in Section IV-C. Once the leading candidates
list is filled, the radius becomes equal to the cost of the
highest cost leaf in that list. Further additions to the list
will result in that highest cost leaf being discarded, and
the radius being adjusted to match the new highest cost
leaf within the list.

III. PROPOSED PARALLEL SINGLE-PASS SEARCH

To make the processing of larger problems more
practical, a distributed processing approach may be used
to consider multiple paths of the tree at one time in
an attempt to generate the leading candidates list in a
shorter time. A key requirement of this approach is that
all parallel searchers act on the same level of the tree at
any one time, providing a simple solution to memory
contention issues. This means that all searchers will
require the same row of the decomposed matrix, and
will also be utilising the same cells of that matrix at any
given time.

In the parallel scheme considered in Fig. 2, each of
the two parallel searchers evaluates the cost of its two
children ([A, B] and [C, D] respectively) on each step.
The two most promising of these children are then
chosen and assigned to the distributed entities on the
next step of the search, while the others are stored for
later consideration.

Once the leaves of the tree are reached, a traditional
sphere search back-tracks up the tree to evaluate the
validity of the other unexplored paths. These may in
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3: Comparison of the number of candidates found as the number of
parallel searchers increases.

turn find additional leaf nodes, some of which may be
more promising than the current ones, and the process
then continues until all remaining branches are either
explored or discarded as non-promising.

To aid in evaluating the computation penalties or gains
from increasing the amount of parallelism, simulations
were conducted on a multiuser detection problem to
count the number of leaves added to the promising
candidates list as the parallelism increased. The key
result, shown in Fig. 3, is that as the number of parallel
searchers increased, the number of candidates found
converged to the target list size. That is, the first set
of candidates encountered were kept as the final result.
Backtracking yeilded few, if any, better candidates.

Hence, the proposed “single-pass” approach simply
instantiates an appropriate amount of parallelism, and
terminates the search as soon as the first set of leaf nodes
is reached, thus entirely eliminating the need for back-
tracking. While [10] alludes to a similar underlying idea,
the approach and implementation strategies presented
here allow for a more modular and flexible design.

Using the parallel search strategy described, the first
set of candidates produced by the searchers are very
likely to be “good”, even though some better candidates
may have been missed. Since the only purpose of these
candidates is to produce soft information, as described in
section IV-C, it is sufficient to do this as long as there are
enough candidates generated. A larger number of parallel
searchers will provide better soft information, but will
incur an increase in complexity. However, as described
in section IV, an increase in the number of searchers
does not necessarily involve significant duplication of
hardware.

A. Performance

To demonstrate that the single-pass approach does
not significantly impact error-rate performance, a soft-
ware model of a flat fading MIMO system has been
used. Independent m × n Rayleigh flat fading channel
coefficients were generated, with a Doppler frequency
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4: Performance of single-pass approach on a 4x4 MIMO system.
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5: Performance of single-pass approach on a 8x8 MIMO system.

corresponding to mobility of 200km/h assuming a 2GHz
carrier frequency. A DS-CDMA system with a chip rate
of 3.84Mcps was assumed, to roughly approximate a 3G
cellular link.

Fig. 4 shows that in a 4 × 4 MIMO system, as few
as 4 searchers is sufficient to generate a near optimal
BER curve, however more searchers would be required
to generate useful soft information.

An 8× 8 system is shown in Fig. 5, a 12× 12 system
is shown in Fig. 6, and a 16 × 16 system is shown in
Fig. 7. These figures show that an increasing number
of searchers are required as the size of the system
increases. However, as is discussed in the next section,
increasing the number of searchers by this order does not
dramatically increase the complexity when calculation
sharing strategies are used.

The algorithm is generally suitable to any system
where the sphere tree search would achieve optimal re-
sults. A near optimal result can always be obtained, how-
ever it involves a trade-off against how much parallelism
is feasible for a specific application. This will depend on
the acceptable BER performance, the processing time
allowed, and the limits on the complexity of the VLSI
circuit.
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6: Performance of single-pass approach on a 12x12 MIMO system.
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7: Performance of single-pass approach on a 16x16 MIMO system.

IV. ARCHITECTURAL STRATEGIES

The implementation benefits of the single-pass ap-
proach are very significant in comparison to other sphere
search architectures, such as the one described in [11].
Since the search is terminated as soon as the first leaf
nodes are reached, no back-tracking is required and so no
stack structure is necessary to remember branches that
were not followed. In addition, there no longer needs
to be any concept of a radius, tree pruning strategy, nor
any complete sorting of the leading candidates list. Thus,
by removing the need for back-tracking, the associated
overhead costs that previously limited the feasibility of
implementation have been eliminated. In addition, our
search strategy allows other optimisations to achieve a
feasible MIMO detector in systems with large amounts
of antennae.

While a detailed architecture is beyond the scope of
this paper, Fig. 8, shows that implementation simply con-
sists of a number of parallel search engines. The content
of these engines is illustrated in Fig. 9. Each engine
implements a series of simple node cost calculations,
which are optimised as follows.
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Memory soft
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8: A possible one-pass architecture, containing a number of parallel
search engines to obtain required throughput.
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9: Architecture of a single search engine.

A. Calculation of Node Costs

From (7), the cost of any node consists of the cost
of its parent, plus the result of a multiplication between
one row of the decomposed matrix, U, and the vector
of the difference between the search centre and the
current estimate. The number of multiplications required
may seem large, but can be greatly reduced by careful
examination of the algorithm.

The key features that allow a simplified implemen-
tation strategy are the choice of either a binary or
quaternary tree (i.e., BPSK or QPSK constellations), and
by requiring that all searchers process the same level of
the tree at any given time.

Since all searchers are processing nodes on the same
level of the tree, then from the expansion

unj (sn − ŝn) = unjsn − unj ŝn
it can be observed that only the first term is unique
to each searcher. Furthermore, since the search tree is
binary, the multiplication becomes a trivial matter of
calculating ±unj . The latter term is common to all
searchers, and so only needs to be calculated once.

By examination of (7), it can be seen that the entire
inner summation is common to the children of a given
node. The computational cost then consists of
• A group of multiplications and additions common

to all searchers;
• A group of additions for the first child of each

searcher;
• A single addition for subsequent children of each

searcher;
• Two squaring operations to find |x|2 for each child.
Similar optimisations are also possible for a tree with

quaternary decisions, where the decisions are of the form
±1± j with a precomputed scaling of

√
2.

B. Searcher Implementation

The single-pass approach allows for a very simple
architecture of searcher hardware, allowing a large num-
ber of searchers to be easily instantiated. The additions
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required for node cost calculations can be performed in
parallel as previously described, and it is not necessary
to maintain a stack of unexplored options. The multi-
plications required to find the final cost of each node
may either be performed in parallel, or time multiplexed,
depending on the number of multipliers that may be
feasibly implemented.

The only point where the number of searchers intro-
duces possible complexity concerns is in the sorting of
evaluated children on each level of the tree. With m
parallel searchers, only the m best children are required.
While standard full-sorting methods such as the bubble
sort may be used, it is also acceptable to find the m best
children in any order.

C. Generation of Soft Information

The required output of the sphere search is a soft
decision for each transmitter’s symbol, with the sign of
the value representing the decision and the magnitude
representing the reliability. Generally, a likelihood ratio
of probabilities is required:

LR(y) =
P (sk = −1|y)
P (sk = +1|y)

. (8)

In a sphere list search, these probabilities can be
determined directly from the leading candidates list. We
note that the difference between the squared Euclidean
distance in (2), and the leaf cost minimised in (3) is a
constant, ∆. By defining the cost of a given leaf as ds
and applying Bayes’ rule,

p(y|s) =
1√

2πσ2
e−

∆
2σ2 e−

d2
s

2σ2 . (9)

The probability of a “1” being transmitted by a partic-
ular transmitter is equal to the sum of the probabilities
of all of the combinations containing a “1” for that
given transmitter, and similarly for a “−1”. It is not
necessary to calculate the constant term 1√

2πσ2 e
− ∆

2σ2 ,
since it cancels when the likelihood ratio is computed.

If the costs of the best n solutions are known, then
the others may be estimated by observing that their
cost is at least as high as that of the worst known
point. This value can then be substituted in place of
the unknown costs. Alternatively, these unknown results
may be ignored completely, since their contribution is
likely to be relatively small. The variance σ2 may
be also approximated to a convenient constant without
significantly affecting the performance.

The soft output log-likelihood ratio associated with the
kth transmitter can then be determined by

LLRk = ln
P (sk = 1|y)
P (sk = −1|y)

(10)

= lnP (sk = 1|y)− lnP (sk = −1|y) (11)

A hard decision can be determined from the soft
outputs by simply recording the sign of the output, with
the magnitude representing the relative confidence of the
decision.
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V. COMPLEXITY

When considered for VLSI implementation, detection
algorithms are generally compared in terms of the num-
ber of multiplications required per detection operation. In
the case of the sphere search, this involves the calculation
of (7) as the search progresses down the tree.

The sum of uij ŝj is constant regardless of which
branches are taken, and the calculation of uijsj is trivial
in the case where sj is taken from a binary or quaternary
constellation. Therefore, the number of multiplications in
the searching operation consists entirely of :

• p calculations of |x|2 on each level, where p is the
number of parallel evaluations at each level of the
tree.

•
K(K+1)

2 multiplications to evaluate uij ŝj . Since
most of these are full complex multiplications, they
are considered to be twice as complex as the |x|2
calculations.

If the single pass approach is used, then the total
amount of multiplications is at most Kz + K(K + 1),
where z is the product of the size of the constellation and
the number of parallel searchers. This analysis ignores
the preprocessing requirements, such as performing the
Cholesky decomposition, which are not changed by
our proposed method and are approximately O(K3)
in complexity. We demonstrate the feasibility of the
preprocessing in [12]

Fig. 10 shows the general trend of the computational
complexity of each type of tree search technique. Due to
its exhaustive search, the standard ML detector can only
be used on very small problems, with K transmitters
requiring 2K cost calculations. The sphere search algo-
rithm can be configured to have an approximate com-
plexity of O(K3) [1]. Hence, it can handle significantly
more transmitters, particularly if parallelism is exploited
in a hardware implementation.

The single-pass approach offers not only compu-
tational savings, but the complexity of the hardware
required is also significantly reduced. In particular, by
removing the need for back-tracking, there is no need
for a stack to store unexplored options, and associated
control mechanisms.

219



VI. CONCLUSION

This paper has described a low complexity tree search
algorithm that is feasible for VLSI application to MIMO
detection. The results have demonstrated that the number
of searchers needed to obtain a good result is not
excessive, and is dependent on the number of antennae in
the system. The calculation sharing strategies proposed
in this paper will significantly reduce the complexity of
the implementation of the parallel searchers, allowing
more to be implemented. Furthermore, the single-pass
approach also removes the need to generate and store
information that would otherwise be required for back-
tracking in the search tree.
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